7

Pacific
Northwest

SHAD: B2

Productive Programming for]|
High-Performance Systems
in Standard C++

Vito Giovanni Castellana g

Senior Computer Scientist, PNNL &

Maurizio Drocco, IBM Research
Marco Minutoli, PNNL
John Feo, PNNL

Performance, Portability, and Productivity

Performance

Scale of the data

Pacific
Northwest

NATIONAL LABORATORY

Teaser

Tackling the Stock Market with HPC — it’s all about money

* Problem: find the highest price in a set of stock options

" Input: ~134 millions of stock-option descriptors
" Qutput: the max-priced option

* Black-Scholes formula
" Input: a stock-option descriptor
" Qutput: its price
= 127-line black-box C function, plenty of <math.h> stuff
" [C. Bienia et al., PARSEC Benchmark Suite, PACT,08]

“Old school” C++

price_t max_price(std: :array<option_t, n> &a) {

auto m = std: :numeric_limits<price_t>::min();
for (auto 1t = a.begin(); 1t != a.end(); ++1t)
m = std::max(res, blck_schls(*it));

return m,;

“Old-school” C++ — HPC?

price_t max_price(..) {..} * 1x CPU core
e Intel(R) Xeon(R) CPU @ 2.80GHz

e gcc9.1

8.5 millions

options/sec
CPUO CPU1 CPUO CPU1

CPU M-2 CPU M-2 CPU M-2 CPU M-2

Node N-2 Node N-1

Modern(ish) C++

price_t max_price(std: :array<option_t, n> &a) {
std: :array<price_t, n_options> p;

std: :transformCa.begin(), a.end(), p.begin(),
blck_schls);

return *std: :max_element(p.begin(),

Modern C++: execution policies may be our friends

price_t max_price(std: :array<option_t, n> &a) {

std: :array<price_t, n_options> p;
std::transform(std: :execution: :seq,

a.begin(), a.end(), p.begin(), blck_schls);
return *std::max_element(std: :execution::se

p.begin(), p.end());

Modern C++: execution policies ARE our friends!

price_t max_price(std: :array<option_t, n> &a) {
std: :array<price_t, n_options> p;
std: :transform(std: :execution: :par,

a.begin(), a.end(), p.begin(), blck_schls);
return *std::max_element(std: :execution: :par,

p.begin(), p.end());

Modern C++ — HPC?

price_t max_price(..) {..} » 10-core Socket
e [ntel(R) Xeon(R) CPU @ 2.80GHz
e gcc9.1

72.9 millions
options/sec

CPUO CPU1 CPUO CPU1

~8.5x speedup

CPU M-2 CPU M-2 CPU M-2 CPU M-2

Node N-2 Node N-1

What about the other N-1 nodes?

price_t max_price(..) {..}

Node N-2 Node N-1

4

Pacific
Northwest

AAAAAAAAAAAAAAAAAA

SCALABLE
HIGH-PERFORMANCE
ALGORITHMS &
DATA-STRUCTURES

5 https://github.com/pnnl/SHAD

https://github.com/pnnl/SHAD

Here comes the SHAD!

price_t max_price(shad: :array<option_t, n> &a) {

shad: :array<price_t, n_options> p;
shad: :transform(shad: :execution: :par,

a.begin(), a.end(), p.begin(), blck_schls);
return *shad: :max_element(shad: :execution: :par,

p.begin(), p.end());
|_sHAD-powered Distributed STL |

Here comes the SHAD! - HPC!

price_t max_price(..) {..} * 16x 10-core sockets
e [ntel(R) Xeon(R) CPU @ 2.80GHz
e gcc9.1

706.7 millions

options/sec

CPUO CPU1 CPUO CPU1 ~82.5x speedup
vs plain STL

CPU M-2 CPU M-2 CPU M-2 CPU M-2

Node N-2 Node N-1

And what about... The GPUs?!

price_t max_price(..) {..}

CPUO CPU 1

CPU M-2 CPU M-2

Node N-2

CPUO

CPU M-2

Node N-1

CPU 1

CPU M-2

Here comes the SHAD again! — HPC!!

price_t max_price(..) {..}

CPUO

CPU M-2

Node N-2

CPU 1

CPU M-2

GPU N-2

4x GPU equipped cluster nodes

Intel(R) Xeon(R) CPU @ 2.80GHz
+ Nvidia Tesla GPU

gcc 9.1 + nvee (CUDA toolkit 9.2)

~5 Billions
options/sec

CPUO cPU1 ~585x speedup
vs plain STL

CPU M-2 CPU M-2

Node N-1
GPU N-1

~7

Pacific
Northwest

AAAAAAAAAAAAAAAAAA

How did we get there?
Let’s take a closer look

SHAD Design Overview

SHAD Extensions

High-level libraries obtained by composing data
structures and/or other extensions. Examples:
O Graph Library O Linear Algebra Library

General Purpose Data Structures
O Array U Set
O Vector d Map

Pacific
Northwest

NATIONAL LABORATORY

Abstract Runtime Interface: main concepts rogi

Northwest

NATIONAL LABORATORY

Machine Abstraction

» Locality
B Entity in which memory is directly accessible
B Examples: node in a cluster, core, NUMA domain

» Task
B Basic unit of computation
B Can be executed on any locality
B Can be asynchronous
» “Handles”
B |dentifiers for spawning activities
B Used to check for task completion
B Multiple tasks may be associated to the same handle -> task groups

Abstract Runtime Interface Mappings e

Northwest

NATIONAL LABORATORY

» Plain C++
B Fast prototyping
» PNNL's Global Memory and Threading (GMT) library

B Targets commaodity clusters
B Available at https://github.com/pnnl/gmt

» Intel’ Threading Building Blocks (TBB)

B Targets shared memory systems
® ... these may include your laptop ©

» PNNL's ARTS
B Under development under the HIVE DARPA project
B Available at https://github.com/pnnl/ARTS
B SHAD-mapping not yet available on the repo

» Other mappings coming soon!

https://github.com/pnnl/ARTS

General Purpose Algorithms and P"f?f_ ?

Data-structures Northwest

AAAAAAAAAAAAAAAAAA

» Include: array, vector, unordered set and map
» They “look like” STL, but they
B Can be distributed on several localities
®High capacity (TB+ scale data)
B Are thread safe
B Can be modified and accessed in parallel
®High performance

B Automatically manage synchronization and data-
movements

Data-structures design template :ﬁ/

Northwest

NATIONAL LABORATORY

| Locality x

—

DA

l !

EABSTRACT RUNTIME INTERFACE

l !

ABSTRACT RUNTIME INTERFACE

A\

—
| % Locality y |
| % |
I
I LOCAL DATA % LOCAL DATA |
I
I
| | 7 I |
| DATA-STRUCTURE INTERFACE I N | DATA-STRUCTURE INTERFACE
| E I
| =
1 . P
O AGGR
| AGGR. g :
| CATALOG BUFFER | E | CATALOG BUEFER |
| I
I
| I
| I
| I
| I
| I

RUNTIME SYSTEM % RUNTIME SYSTEM
___________ /%ZL T

SHAD extensions ?f/

Northwest

AAAAAAAAAAAAAAAAAA

» Higher-level or domain specific libraries

» Built on top of the General Purpose library

» Can be composed, to obtain application-specific libraries
B High flexibility
B Evolving framework

» Examples of SHAD extensions
B Attributed Graph Lib (Prototype Available)
B Linear Algebra Lib (Ongoing Work)
B Machine Learning Lib (Future Work)

Pacific
Northwest

AAAAAAAAAAAAAAAAAA

STL Interfaces

From STL inspired to STL compliant Pacific

Northwest

AAAAAAAAAAAAAAAAAA

» Semantics, concepts and syntax analogous to STL's APls
M lterators, ranges, algorithms

» All STL's algorithms can be executed on SHAD'’s data structures

B But you shouldn’t do that
® Severe performance penalties due to sync remote memory operations

» Additional execution policies for performance
M distributed sequential
® Algorithms with sequential semantics (e.g. left —folding)
M distributed_parallel
® Analougus to std::par

o

Preliminary results Pacific

Northwest

NATIONAL LABORATORY

array unordered_set

Localities Localities

1.2 4.8 16 1.2 4.8 16

204
15+
15+
a 10+ a
> >
2 2
(] o 10
o o
))
54
54
0- I I I I I I I I I | I I I I I I 0-
PSS A . AR
o & IR &S S @@ N & &
N2 7 & S Q7 T 2 O L L e N N (@ /
S & S SIS e\é‘ Q/z@ FELFS > 0 K 6‘ é‘ «\ 5
(\\ﬂ‘ <) 47 Q7 N O (\\Q {(\/
SIS & @\ &
<&) 6‘ K
>

§

B Commodity cluster equipped with Xeon E5-2680 v2 CPUs @ 2.8 GHz

B distributed_parallel policy
B 1 Billion elements of size t type

~7

Pacific
Northwest

AAAAAAAAAAAAAAAAAA

And what if | don’t like C++?

SHADes: The SHAD Exploration System .

Northwest

NATIONAL LABORATORY

» Client-server Architecture, inspired by Arkouda

B Client/server communications via ZMQ library
» Jupyter Notebook / Python frontend, SHAD backend

» Front-end commands are mapped to SHAD functions
» Multiple clients can connect to the same backend at the same time

» Clients can connect to multiple backends

» Debutted on Github!

B https://github.com/pnnl/SHADes

https://github.com/pnnl/SHADes

~7

Pacific
Northwest

AAAAAAAAAAAAAAAAAA

https://github.com/pnnl/SHAD

Vito Giovanni Castellana
vitoGiovanni.castellana@pnnl.gov

